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Abstract
The five piezoelectric stress coefficients eik of orthorhombic Im2m NaNO2

were calculated by ab initio quantum mechanical methods, employing the
Berry phase theory, with an all-electron basis set of localized Gaussian-like
functions and either a DFT-GGA or a Hartree–Fock Hamiltonian. DFT results
are larger by about 30% than HF ones. The purely ionic and electronic
contributions to piezoelectricity were evaluated by computing the internal and
external (clamped-ion), respectively, components of each coefficient. In the
e34 case the clamped-ion component is dominant, indicating that the electronic
contribution prevails over the ionic one of opposite sign. In all other cases
the overall piezoelectric effect is ruled by the ionic contribution. The full set
of elastic constants was also computed, by means of which the piezoelectric
strain coefficients dik could be derived. These are discussed and compared to
experimental data from the literature.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interesting prospects of calculating the piezoelectric properties of crystalline materials on the
basis of a first-principles approach have been opened up by recent progress in theoretical
insight and computational efficiency. In particular, the ambiguities which once affected the
fundamental concept of polarization in periodic atomic systems were completely removed by
the quantum mechanical theory based on Berry phases and presented about a decade ago [1, 2].
This may not only improve our fundamental understanding of the piezoelectric behaviour of
solids, but also supplement somewhat the experimental techniques in this field. In fact, it is
well known that the measuring of single crystal piezoelectric constants is severely hampered
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by strict requirements on the quality of the sample, which has to be grown in a well controlled
defect state.

A number of methods have been developed for calculating the piezoelectric properties of
crystals. An early approach, based on linear response theory, provides the stress coefficients
eik = −(∂τk/∂Ei)ε, which are derivatives of the stress components τk (Voigt’s notation)
with respect to the i th component of the electric field at constant strain ε. This method was
implemented in computer codes based on a plane-wave expansion of the wavefunctions [3, 4];
second-order, non-linear effects cannot be simulated by this technique. In another scheme [5],
the strain induced by application of a periodic electric field to the crystal is computed
numerically, obtaining the piezoelectric strain coefficients dik = (∂εk/∂Ei)τ . In this case
a supercell has to be built up, thus increasing the computational cost significantly. The third
approach is based on the direct computation of the intensity of polarizationP induced by strain
by means of the Berry phase theory, so that the piezoelectric constants eik = (∂Pi/∂εk)E

can be obtained by numerical differentiation. According to standard thermodynamics,
(∂Pi/∂εk)E = −(∂τk/∂Ei)ε and (∂εk/∂Ei)τ = (∂Pi/∂τk)E . This method, implemented in
the CRYSTAL computer code [6], proved to be successful for calculating the full piezoelectric
tensors of ZnO and ZnS in their hexagonal wurtzite and cubic zinc blende phases [7], and it
was used for the present work.

Molecular crystals may be much more challenging systems than simple close-packed
inorganic structures for ab initio simulations of the piezoelectric behaviour, because more
flexible and anisotropic chemical bonding is usually involved in crystal cohesion. This can
produce a stronger structural relaxation under strain, requiring possibly a more demanding
computational accuracy. Therefore we considered sodium nitrite, containing NO−

2 molecular
ions with symmetrical triangular configuration and strong N–O covalent bonds, to be a good
candidate for a study on this class of compounds. The room temperature ferroelectric phase
of NaNO2 has orthorhombic Im2m symmetry, with the N and Na atoms lying on the y polar
crystallographic axis. The spontaneous polarization of this phase has been characterized [8, 9],
and its five independent non-zero dik piezoelectric coefficients have been reported [10]. On
the other hand, no experimental eik values are available in the literature for NaNO2. Two
successive phase transitions from the ferroelectric to an incommensurate antiferroelectric phase
at Tc = 436.5 K, and then to the paraelectric Immm phase at TN = 438 K, are observed. The
paraelectric phase has a disordered crystal structure, resembling a superposition of the two
ferroelectric orientation states [11].

Some preliminary results of this investigation, concerning the spontaneous polarization
and the eik stress coefficients of sodium nitrite computed by the Hartree–Fock (HF)
Hamiltonian, have been already reported [12]. The purpose of the present work is, first,
to extend the calculation of the five eik piezoelectric constants by use of a density-functional-
theory (DFT) Hamiltonian. The DFT technique is the most widely used in solid state
simulations, and a full comparison with HF results for piezoelectric properties can be quite
interesting. Further, we want to obtain the full set of elastic constants by both functionals, and
to employ it for computing the dik strain coefficients, which can be compared to experimental
results from the literature. Eventually, a decomposition of the eik values into their ‘internal’ and
‘external’ components will be carried out, so as to try to interpret the anisotropic piezoelectric
effect of NaNO2 in terms of the structural relaxation under mechanical strain.

2. Computational method

All quantum mechanical calculations were based on the periodic linear combination of
atomic orbitals (LCAO) approach, where crystalline orbitals are expanded over basis sets
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of localized functions (atomic orbitals). These are represented as products of radial functions
(linear combinations of Gaussians) of the electron-to-nucleus distance times a real solid
spherical harmonic. All-electron basis sets were employed for all atoms, with the following
scheme of Gaussian contractions: 8(s)511(sp)1(d)G for Na, 6(s)311(sp)1(d)G for O, and
6(s)311(sp)1(d)G for N [12]; this corresponds to using 18 atomic orbitals to represent each
of the three atoms. The self-consistent-field (SCF) equations for ground-state one-electron
energy eigenvalues and eigenfunctions were solved both by Hartree–Fock (HF) and by density-
functional-theory (DFT) Hamiltonians, according to the computational scheme implemented
in the CRYSTAL03 computer code [6]. In the DFT case, a generalized-gradient-approximation
(GGA) Perdew–Burke–Ernzerhof (PBE) functional [13] was used.

The level of numerical approximation in evaluating the Coulomb and exchange series
appearing in the SCF equations for periodic systems is controlled by five tolerances [6].
These are related to estimates of overlap or penetration for integrals of Gaussian functions
on different centres, which define cut-off limits for series summation. The values used in the
present calculations are 10−7, 10−7, 10−7, 10−7, and 10−14. The reciprocal space was sampled
according to a regular sublattice defined by six points in the Monkhorst grid (46 points in
the irreducible Brillouin zone). Convergence was checked with respect both to tolerances
and to the number of Monkhorst points, and it was controlled by a threshold (�E = 10−9

Hartree per primitive unit cell) in the self-consistent-field cycles. In order to accelerate the
SCF convergence, the level shifter technique was used: this enhances the energy difference
between highest occupied and lowest empty states in the first cycles. Atomic coordinates were
optimized by calculation of analytical gradients and subsequent conjugate gradient algorithm.

Polarization effects in insulating crystals can be computed, by the CRYSTAL03 code,
either according to the Berry phase (BP) theory [1, 2] or by use of the Wannier function method.
Concerning the first approach, the BP ϕ(ε)h (h = 1, 2, 3) along the hth crystallographic axis,
for the ε strain state of the crystal structure, is given by the following formula:

ϕ
(ε)
h = (2πV/|e|)P · a∗

h = (V/4π2)
∑

n

∫
〈un(K)|−ia∗

h · ∇K |un(K)〉 dK, (1)

where V is the direct unit-cell volume, |e| is the electron charge, a∗
h is the hth reciprocal

lattice basis vector, n is the electron band index, K is the wavevector in the first Brillouin
zone, and un(x,K) = ψn(x,K) exp(iK · x), where ψn(x,K) is the nth crystalline orbital
(eigenfunction of the one-electron Hamiltonian). It is understood that all the P , a∗

h , V , and
un(K) quantities depend on the ε strain state of the crystal structure. Analogously to the
polarization intensity P , also the BP ϕh has no absolute physical meaning, but only its changes
(e.g., those due to crystal strain) are defined and related to physical observables. It should be
emphasized that equation (1) is quantum mechanically quite rigorous, so that the quality of the
computed Berry phases depends only on the quality of the Bloch functions un(x,K) obtained
by solving the SCF equations. This holds irrespective of the kind of chemical bonding present
in the crystal considered.

By inverting the first equality in (1), the i th Cartesian component of the polarization
intensity Pi can be derived as a linear combination of the BPs [14]:

Pi = (|e|/2πV )
∑

j

a j iϕ j , (2)

where a ji is the i th Cartesian component of the j th direct lattice basis vector a j . By
differentiation one eventually obtains:

eik = (∂Pi/∂εk)ε=0 = (|e|/2πV )
∑

j

a j i(∂ϕ j/∂εk)ε=0. (3)
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Table 1. Unit-cell constants and free atomic fractional coordinates of NaNO2 (Im2m ferroelectric
phase), optimized with the GGA-PBE and HF functionals and compared to experimental values.

a (Å) b (Å) c (Å) V (Å3) y (Na) y (N) z (O)

3.427 5.478 5.399 101.36 0.096 69 0.127 98 0.197 98 DFT-PBE
3.481 5.537 5.314 102.42 0.095 32 0.119 31 0.194 68 HF
3.502 5.521 5.379 104.00 0.088 3 0.122 8 0.196 5 Exp. (30 K) [15]
3.565 5.573 5.385 106.99 0.086 7 0.121 1 0.195 5 Exp. (298 K) [16]

Actually the three BPs ϕ j(εk) are computed by equation (1) as numerical functions of the strain
parameter εk , from which the derivatives ∂ϕ j/∂εk can be easily obtained. It should be stressed
that, by use of equation (3), the proper piezoelectric stress coefficients are obtained, which do
not depend on the arbitrary addition of lattice vectors times e/V to P , and thus do not need
correction terms equal to components of the spontaneous intensity of polarization P (cf [14]
for a detailed explanation of this point).

In the case of NaNO2, orthorhombic Im2m, one should be careful to use equation (3)
because the computed BPs are referred to the primitive rather than to the body-centred unit
cell, and thus the appropriate a ji coefficients have to be used. The following expressions are
obtained for the five independent piezoelectric constants:

e2k = (|e|/2πac)(∂ϕ1/∂εk + ∂ϕ3/∂εk − ∂ϕ2/∂εk) (k = 1, 2, 3),

e34 = (|e|/2πab)(∂ϕ1/∂ε4 + ∂ϕ2/∂ε4 − ∂ϕ3/∂ε4),

e16 = (|e|/2πbc)(∂ϕ2/∂ε6 + ∂ϕ3/∂ε6 − ∂ϕ1/∂ε6).

(4)

3. Results and discussion

3.1. DFT-GGA and HF stress piezoelectric tensors of NaNO2

The origin on the polar axis was set as y(O) = 0. Owing to symmetry constraints of the
Im2m space group, the only internal degrees of freedom are y(N), y(Na) and z(O); the other
fractional coordinates are x(N) = z(N) = x(O) = 0, x(Na) = z(Na) = 1/2. Results of the
structure optimizations with the DFT and HF Hamiltonians are reported in table 1, and therein
compared to experimental data obtained at 30 [15] and at 298 K [16]. The agreement is good
and in line with high-quality ab initio calculations: deviations of HF and DFT cell edges from
corresponding 30 K data are within 1% and 2%, respectively, and atomic absolute coordinates
show maximum shifts of a few 10−2 Å.

The piezoelectric stress coefficients were calculated by applying the five strains [ε100000],
[0ε20000], and [00ε3000] (range −0.01 � εk � 0.01) and [000ε400], [00000ε6] (range
−0.03 � εk � 0.03) with 14 points computed for each deformation. In every case all free
atomic coordinates were relaxed to find the least-energy structure configuration, and the three
Berry phases ϕ1, ϕ2, and ϕ3 were derived. Then the (∂ϕ j/∂εk)ε=0 derivatives were computed
numerically, and the expressions (4) yielded the eik coefficients. The first three strains do not
change the Im2m space group, whereas in the other two cases the symmetry is lowered to
monoclinic Cm. Only the (100) mirror plane is kept for the ε4 strain, and there are thus six
degrees of freedom (y and z coordinates of Na, N and O2, with y(O1) and z(O1) as origin-
fixing values). In the ε6 case, the (001) plane is retained with four free variables (x and y
coordinates of Na and N, with x(O) and y(O) as origin-fixing values).

All calculations were performed both with the DFT-GGA-PBE and with the HF
Hamiltonians. In the former case, we found an unexpected slow convergenceof the results with
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Table 2. Calculated (DFT-PBE and HF) piezoelectric stress coefficients eik (C m−2) of NaNO2,
also decomposed into their internal eint

ik and clamped-ion e(0)ik contributions.

e21 e22 e23 e34 e16

−0.095 0.200 −0.147 0.150 −0.205 PBE: total
−0.069 0.114 −0.094 −0.420 −0.203 PBE: eint

ik

0.009 0.111 −0.034 0.683 0.015 PBE: e(0)ik

−0.104 0.089 −0.113 −0.533 −0.220 PBE: total − e(0)ik

−0.088 0.169 −0.104 0.132 −0.127 HF: total
−0.054 0.084 −0.056 −0.526 −0.130 HF: eint

ik

−0.002 0.096 0.003 0.741 0.005 HF: e(0)ik

−0.086 0.073 −0.107 −0.609 −0.132 HF: total − e(0)ik

respect to the thickness of the grid used for the numerical integration of the electron density
functionals. In order to obtain very stable and well converged eik values, a grid of ‘99/20’
type [17] had to be used; with thicker grids, no more changes were observed in the results.
These demanding computational conditions seem to be related to the peculiarly soft character
of chemical bonding in sodium nitrite, as test calculations on ZnO attained convergence with
a cheaper ‘75/16’ grid.

The final results obtained are reported in table 2 (first lines). Small differences between
the present HF results and the previous ones [12] are related to the more accurate structure
optimization achieved in this work, which also produced a slightly different equilibrium
geometry. The DFT values appear to be systematically larger (in modulus) than the HF ones,
with the biggest difference (over 60%) for the e16 constant, and an average of about 20% for
the other cases. The pseudo-symmetry e21 ≈ e23 and e34 ≈ −e16 already noticed for the HF
results [12] seems to break down in the DFT case, suggesting, together with the larger spread
of eik values, that a more anisotropic piezoelectric behaviour is predicted by DFT-PBE than
by HF.

3.2. External and internal components of piezoelectric constants

A better insight into the ionic and electronic nature of piezoelectricity is given by considering
every eik coefficient as the sum of eint

ik = (∂Pi/∂εk)ε=0 and e(0)ik = (∂Pi/∂εk)x components due
to pure internal (fixed unit cell) and external (fixed fractional atomic coordinates x) strains,
respectively [18, 14, 7]. Such components account for the ionic (eint

ik ) and electronic (e(0)ik )

parts of the crystal relaxation under strain, giving rise to the total piezoelectric response. The
internal piezoelectric constant can be expressed as follows:

eint
ik =

∑

s

∑

j

(∂Pi/∂xs j)ε=0(∂xs j/∂εk)ε=0

= (1/V )
∑

s

∑

j

(∑

j ′
a j j ′ Z∗

s,i j ′

)
(∂xs j/∂εk)ε=0, (5)

where the sums are extended over all atoms in the unit cell and over the three directions, and
the quantities Z∗

s,i j = V ∂Pi/∂Xs j are the Born dynamical charge tensor components; xs j and
Xs j are the fractional and Cartesian, respectively, j th coordinates of the sth atom.

The internal and external components were calculated for all piezoelectric stress
coefficients (table 2). In particular, the values of eint

ik are compared to those of the eik − e(0)ik
differences: the relatively moderate discrepancies observed may be due to numerical errors
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Table 3. Born effective charges Z∗
s,i j = V (∂Pi/∂Xsj ) (|e| units).

Z∗
N,22 Z∗

Na,22 Z∗
N,33 Z∗

O,33 Z∗
N,11 Z∗

Na,11

PBE 0.262 1.072 2.303 −1.770 −0.150 1.005
HF 0.513 1.087 3.101 −2.154 0.000 0.950

Table 4. Derivatives ∂xsj /∂εk for NaNO2 (first lines, PBE; second lines, HF).

∂/∂ε1 ∂/∂ε2 ∂/∂ε3 ∂/∂ε4 ∂/∂ε6

xNa −0.158
−0.126

xN 0.179
0.139

yNa −0.038 0.085 −0.054
−0.032 0.094 −0.033

yN 0.007 −0.101 0.014
0.007 −0.104 0.007

zN −0.059
−0.059

zO 0.031
0.031

introduced in the computation of equation (5), but also to a minor failure of the eik = e(0)ik + eint
ik

decomposition, because of small non-zero coupling terms between the internal and external
components.

Let us first consider the behaviour of the eint
ik components. The Born charges relevant

for the five independent eik constants of NaNO2, according to (5), were calculated and are
reported in table 3. By comparison with formal atomic charges, it turns out that all the Na
values are very close to +1 irrespective of the Cartesian direction and of the Hamiltonian used,
as expected for a very ionic species. In all other cases, the values calculated by DFT-PBE are
always lower than the HF ones, and then farther from ideal charges (cf the Z∗

O,33 case, where
a full ionic behaviour is indicated by the HF result only). The nitrogen Born charges depend
strongly on the crystallographic direction, always being much smaller than the formal value
+5 and even getting vanishing or slightly negative in the Z∗

N,11 case.
The (∂xs j/∂εk)ε=0 quantities are reported in table 4. No substantial differences appear

between DFT-PBE and HF results but for the ε3 and ε6 cases, where a slightly larger relaxation
effect is shown by DFT-PBE data. Let us first consider the derivatives with respect to ε1, ε2

and ε3: these control the internal parts of the e21, e22 and e23 constants, which are related
to changes of the P int

2 (ionic) component of polarization intensity under strain. The total
dipole moment arising from pure ionic displacements (internal part), projected along b, is
related to the shortest

−−→
O–N · b and

−−−→
O–Na · b distances (cf figures 1(a) and 2(a)); we then

obtain per unit volume that P int
2 = (2/ac)(Z∗

N,22yN + Z∗
Na,22 yNa), so that eint

2k = ∂P int
2 /∂εk =

(2/ac)(Z∗
N,22∂yN/∂εk + Z∗

Na,22∂yNa/∂εk), which is the same formula as that given by (5). Now,
it appears from table 4 that the signs of ∂yN/∂εk and ∂yNa/∂εk are always opposite, indicating
that the relaxations of N and Na under strain have contrary effects on the polarization. However,
as Z∗

N,22 is smaller than Z∗
Na,22, the relaxation of sodium prevails and dominates the internal

piezoelectric response. The signs of the eint
2k quantities (table 2) are thus the same as those of

∂yNa/∂εk (table 4).
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(a) (b)
Z

Y

Figure 1. Projection onto the (100) plane of the equilibrium (a) and of the deformed ((b): e34
piezoelectric component, exaggerated distortion) crystal structures of NaNO2. Small and large
dark spheres represent N and Na atoms, respectively; pale spheres denote O atoms. The strain-
induced internal polarization vector is shown in (b).

(a) (b)

X

Y

Figure 2. Projection onto the (001) plane of the equilibrium (a) and of the deformed ((b): e16
piezoelectric component, exaggerated distortion) crystal structures of NaNO2. Small and large
dark spheres represent N and Na atoms, respectively; pale spheres denote O atoms. The strain-
induced internal polarization vector is shown in (b).

The ∂zN/∂ε4 and ∂zO/∂ε4 derivatives are relevant for the eint
34 quantity, according to (5):

eint
34 = (2/ab)(Z∗

N,33∂zN/∂ε4 + Z∗
O,33∂zO/∂ε4). In this case not only the z derivatives but also

the Born charges of N and O have opposite signs, so that an internal polarization along −c

arises within the NO−
2 ion (figure 1(b)). As for the last internal piezoelectric constant, we

have eint
16 = (2/bc)(Z∗

N,11∂xN/∂ε6 + Z∗
Na,11∂xNa/∂ε6). The situation is similar to that of the

eint
2k quantities, because N and Na relax into opposite directions (along the x instead of y axis

in this case); however, here the Z∗
N,11 charge is vanishing (HF) or even negative (PBE), so that

the contribution of N is either negligible or it adds to that of Na. A polarization along −a,
mainly contributed by the Na–O dipole, ensues (figure 2(b)).

All the eint
ik values, as well as the clamped-ion contributions e(0)ik , are reported in table 2.

The latter ones appear to be significant only in the e22 and e34, and perhaps e23 cases. Further, it
turns out that all the eik coefficients but e34 have the same signs as their corresponding internal
components. This confirms the behaviour usually observed, e.g. in the ZnO and ZnS cases [7],
that the major part of the piezoelectric effect is due to ionic relaxation. However, in the zinc
chalcogenides the external components, though smaller in modulus than the internal ones,
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Table 5. Ab initio (Hartree–Fock and DFT-GGA-PBE) values of elastic constants chk (GPa) and
compliances shk (TPa−1) for NaNO2, compared to experimental data [21] linearly extrapolated to
0 K and to data measured directly at room temperature [20].

DFT-PBE HF Exp.

hk chk shk chk shk chk (0 K) chk (298 K)

11 43.3 35.9 46.3 29.3 38.8 31.7
22 85.8 13.4 75.7 15.4 78.9 58.2
33 94.6 16.0 97.9 12.9 86.4 66.0
12 20.6 −4.7 21.2 −6.0 12.6
13 36.5 −12.5 30.0 −7.6 19.7
23 27.0 −2.0 22.0 −1.6 17.4
44 18.7 53.5 17.6 56.8 17.2 12.4
55 4.7 212.8 9.9 100.7 9.5 9.9
66 4.2 238.1 9.1 110.0 5.2 4.8

always have the opposite sign, so that the purely electronic effect acts to reduce the magnitude
of the ionic one. In NaNO2, on the other hand, for e22 the internal and external components
are both positive, whereas for e34 a very peculiar behaviour is observed: the two components
have opposite signs, but the external one is larger in magnitude than the internal one. So, in
this case the electronic contribution to piezoelectricity appears to prevail over the opposing
ionic effect.

3.3. Elasticity and strain piezoelectricity

As the piezoelectric stress coefficients eik are not known from experiment,but the strain ones dik

are [10], it is interesting for the purpose of comparison to derive the latter quantities indirectly
from the eik values through the thermodynamic relationship:

dik =
6∑

h=1

eihshk, (6)

where the shk quantities are the elastic compliance coefficients, components of the 6×6 (Voigt
notation) s matrix which is the inverse of the cmatrix of the elastic constants. In order to use this
equation, the elastic constants chk = (1/V )∂2 E/∂εh∂εk of sodium nitrite were calculated by
applying the appropriate deformations and computing the second derivatives numerically. Full
structural relaxations were always performed in all cases. A similar procedure was discussed
in detail for the case of tetragonal MgF2 [19].

The full set of elastic constants of NaNO2 was obtained and reported in table 5, where
it is also compared to experimental results by the Brillouin scattering method at room
temperature [20], and to a partial set of values linearly extrapolated to 0 K from data measured
by the ultrasonic pulse echo technique in the 293 to 473 K range [21]. The thermal effect
is seen to be very large, so that extrapolating the data to the athermal condition is necessary;
however, the resulting values are affected by some uncertainty, owing to the rather small
temperature range used for the extrapolation. Both DFT-PBE and HF theoretical results agree
satisfactorily with the extrapolated values from experiment; for the room-temperature extra-
diagonal constants c12, c13 and c23, on the other hand, the discrepancy is obviously larger.

By inversion of the matrix c and using equation (6), the piezoelectric strain coefficients dik

were computed and reported in table 6. Therein the values measured at room temperature by the
resonance and antiresonance method [10] are also given. We observe a reasonable agreement
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Table 6. Calculated and experimental [10] piezoelectric strain coefficients dik (pC N−1) of
NaNO2.

d21 d22 d23 d34 d16

−2.5 3.4 −1.6 8.0 −48.8 PBE
−3.1 3.3 −0.7 7.0 −14.0 HF
−2.8 1.7 −1.2 9.3 −20.2 Exp.

between theory and experiment for the d21, d23 and d34 constants, whereas the calculated d22

values are about double the measured data, and the PBE and HF d16 results are greatly over-
and under-estimated, respectively, with respect to experiment. These discrepancies are not
surprising, in view of the unknown thermal effect on the experimental dik values, and of the
cumulative errors of the double calculation of the eik and chk quantities used to derive the
theoretical dik strain coefficients.

4. Conclusions

The eik stress piezoelectric coefficients of NaNO2 at the athermal limit were calculated
successfully on the basis of the Berry phase theory. By use of the DFT-GGA-PBE Hamiltonian,
larger absolute values are obtained than in the Hartree–Fock case, particularly for the e16

constant. This may be related to the Born dynamical charges being smaller with the PBE than
with the HF functional. An insight into the microscopic origin of piezoelectricity in sodium
nitrite could be given by comparing the internal (ionic) and external (electronic) components
of the eik coefficients. In particular, the electronic contribution turned out to be negligible
but for the e22 and e34 constants. In the e22 case, the ionic and electronic parts have the same
sign and thus sum up, whereas they go into opposing directions for the e34 coefficient, with
prevalence of the electronic effect. The full set of elastic constants was also calculated and
employed, together with the eik results, to obtain the five dik strain piezoelectric coefficients at
the athermal limit. A comparison with the room-temperature experimental data available from
the literature is unfortunately biased by the strong thermal dependence of the elastic constants,
and by the unknown corresponding effect for the dik quantities.
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